Neues aus der Wissenschaft

In der wissenschaftlichen Presseschau der vergangenen Woche geht es u. a. um neue Erkenntnisse in der Klimaforschung, um Fledermäuse und Salamander. Auch ein pflanzliches Projekt wird vorgestellt: Salztolerante Pflanzen reinigen Prozesswasser aus der Fischzucht.

17.12.2012, Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung
Fruchtfressende Fledermäuse sind Schlüsselorganismen in Ökosystemen
Die Fledermausexperten Simon Ripperger und Frieder Mayer (Museum für Naturkunde Berlin) beschreiben in einer aktuellen Publikation mit anderen Autoren Fledermäuse als Schlüsselorganismen für das Funktionieren von Ökosystemen, die vom Menschen stark beeinflusst sind. Die Studie zeigt die Dringlichkeit von Schutzmaßnahmen, damit Schlüsselorganismen wie samenausbreitende Fledermäuse auf lange Sicht zur Funktion von Ökosystemen beitragen können. Der Einfluss der Größe des noch erhaltenen natürlichen Lebensraums und der Struktur der dazwischen liegenden Landschaft auf die genetische Vielfalt der Populationen gibt Ansatzpunkte für mögliche Schutzmaßnahmen.
Tropische Regenwälder zählen zu den artenreichsten Ökosystemen der Erde. Eine Vielzahl unterschiedlichster Organismen interagiert in komplexer Weise miteinander. Seit einigen Jahrzehnten stehen diese Systeme unter starkem menschlichem Einfluss. Einst flächendeckende Regenwälder müssen Plantagen oder Viehweiden weichen. Das Resultat sind Reste natürlichen Lebensraums, eingebettet in eine heterogene, menschlich beeinflusste Landschaft. In Folge dessen sinkt die Artenvielfalt in den verbleibenden Habitaten und besonders größere Säugetiere und Vögel, die wichtige Samenausbreiter darstellen, verschwinden, wodurch die Funktion des gesamten Ökosystems in Gefahr gebracht wird. Fledermäuse hingegen, die sich von Früchten ernähren, verbleiben häufig in großer Zahl selbst in kleinen Waldfragmenten und spielen eine besonders wichtige Rolle bei der Samenverbreitung.
Eine Reihe aktueller Studien zeigte für eine Vielzahl von Tiergruppen, dass Habitatfragmentierung (die Umwandlung großflächigen, natürlichen Lebensraums in kleinere Fragmente) selbst auf kleinem Raum zu verringertem oder unterbrochenem Austausch von Individuen zwischen Populationen führen kann. Die Folge sind verringerter genetischer Austausch zwischen und erhöhte Inzucht innerhalb der Populationen. „Dadurch steigt der Verwandtschaftsgrad und letztlich sinkt die genetische Vielfalt innerhalb der teils isolierten Populationen, da wenig ‚frisches Blut’ von außerhalb einfließt“, so Fledermausexperte Ripperger. Dies gefährdet wiederum das langfristige Überleben der Populationen, da genetische Diversität häufig als wichtig im Zusammenhang mit der Anpassungsfähigkeit von Organismen an sich ändernde Umweltbedingungen diskutiert wird. Inwiefern fruchtfressende Fledermäuse in landwirtschaftlich dominierten Gegenden von derartigen Effekten betroffen sind, war bisher trotz ihrer wichtigen Rolle für gestörte Ökosysteme weitgehend unbekannt.
Daher untersuchten die Autoren Fledermäuse im karibischen Tiefland Costa Ricas, deren Populationen durch Viehweiden, Ananas- und Bananenplantagen getrennt sind. Die Ergebnisse zeigen, dass Fledermauspopulationen in diesen Gebieten trotz der Flugfähigkeit der Tiere und der damit verbundenen hohen Mobilität, nicht in regelmäßigem genetischem Austausch stehen, sondern teilweise durch die vom Menschen genutzten Flächen isoliert scheinen. Als eine Folge zeigen die einzelnen Populationen unterschiedlich stark ausgeprägte genetische Verarmung. Der Grad der Verarmung steht einerseits im Zusammenhang mit der Fläche des verbleibenden natürlichen Lebensraums, da größere Waldstücke vermutlich eine größere Anzahl von Tieren beherbergen können und so der Verlust genetischer Diversität verlangsamt wird. Zum anderen wurde die genetische Vielfalt der Populationen durch Reste verbleibenden Lebensraums, wie z.B. Galeriewälder, in der nahen Nachbarschaft der Waldstücke positiv beeinflusst. Solche Strukturen bieten die Möglichkeit, geschützter als in offenem Gelände zu benachbarten Waldfragmenten zu gelangen und so zum genetischen Austausch beizutragen. Die Studie zeigt die Dringlichkeit von Schutzmaßnahmen in stark anthropogen beeinflussten Gebieten auf, damit Schlüsselorganismen wie samenausbreitende Fledermäuse auf lange Sicht zur Funktion des verbleibenden Ökosystems beitragen können.
Originalveröffentlichung: S. Ripperger, M. Tschapka, E. Kalko, B. Rodríguez-Herrera, F. Mayer : Life in a mosaic landscape: anthropogenic habitat fragmentation affects genetic population structure in a frugivorous bat species. Conserv Genet DOI 10.1007/s10592-012-0434-y

18.12.2012, Senckenberg Forschungsinstitut und Naturmuseen
(Fleder)Mäuse als Krankheitsüberträger – Untersuchungen zu Vektoren in Hessens Wäldern
Wissenschaftler der Senckenberg Gesellschaft für Naturforschung und des Biodiversität und Klima Forschungszentrums (BiK-F) untersuchen anhand von Mäusen und Fledermäusen die potentielle Ausbreitung von Infektionskrankheiten in Hessen. Besonders das Hantavirus ist in hessischen Wäldern auf dem Vormarsch.
Eine Hantavirus-Erkrankung beim Menschen beginnt mit schnell steigendem Fieber, Kopfweh und Schmerzen im Bereich des Rückens und Bauches. In Deutschland sind aus dem zurückliegenden Jahr über 2000 Infektionsfälle bekannt – Tendenz steigend.
Wissenschaftler der Senckenberg Gesellschaft für Naturforschung und des Biodiversität und Klima Forschungszentrums (BiK-F) untersuchen gemeinsam mit Forstämtern und dem Friedrich-Loeffler-Institut (FLI) an 12 über Hessen verteilten Standorten Nagetiere daraufhin, ob diese als potentielle Überträger von Hantaviren auf den Menschen in Frage kommen.
„Besonders Rötelmäuse sind geeignete Vektoren, also Überträger für das Virus“, erklärt Prof. Dr. Sven Klimpel von der Senckenberg Gesellschaft für Naturforschung und BiK-F. „Die Mäuse selbst erkranken nicht, können aber Menschen beispielsweise durch einen Biss oder über Viren in ihrem Kot und Urin infizieren.“
Bisher gab es zum Thema Hantaviren in Nagetieren keine flächendeckenden Untersuchungen in Hessen, und die seit 2011 gesammelten Proben stellen allein schon vom Probenumfang eine einmalige Datenerhebung dar. In Deutschland sind bislang mindestens drei Nagetier-assoziierte Hantavirus-Arten nachgewiesen (Puumalavirus, Dobrava-Belgrad-Virus, Tulavirus). „In unseren Nagerproben aus Hessen konnten wir bisher in Feld- und Erdmäusen ausschließlich das Tulavirus nachweisen. Die Ergebnisse zeigen für dieses Virus sowohl eine weite geografische Verbreitung als auch ein für Hantaviren unerwartet breites Wirtsspektrum.“ so Klimpel. Aber auch diverse Parasiten konnten von den Wissenschaftlern identifiziert werden.
„Wir haben beispielsweise erstmals eine etwa 6 Millimeter große Flohart bei den Mäusen in Hessen nachweisen können“, erzählt Projektmitarbeiter Raphael Frank. Dieser Riese unter den parasitären Insekten (der gewöhnliche Hundefloh ist gerade mal ein Drittel so groß) kann als potentieller Überträger von Vektor zu Vektor fungieren.
Und auch andere „Mäuse“ stehen im Fokus der Parasitologen. „Fledermäuse spielen eine wichtige Rolle in unseren Breiten, sind sie doch zum Beispiel bekannte Tollwut-Überträger“, erläutert Klimpel. Fledermäuse, die zu den ältesten Säugetierarten der Welt gehören, tragen aktiv zur Regulierung von Insektenbeständen bei. Sie zählen vor allem in Europa zu den bedrohten Tierarten. Doch Fledermäuse beherbergen häufig auch Paramyxoviren, zu denen auch die Erreger von Tollwut oder Mumps gehören.
Eine Überraschung haben die Untersuchungen an den fliegenden Säugetieren bereits ergeben: Die Wissenschaftler konnten an den hessischen Fledermäusen Unmengen von Bettwanzen nachweisen. Die vier bis sechs Millimeter großen blutsaugenden Insekten sind als Mitbringsel aus tropischen Regionen bekannt und gelten als äußerst lästige Begleiter, da sie nur schwer wieder loszuwerden sind.
„Untersuchungen haben außerdem ergeben, dass Bettwanzen zahlreiche Erreger von Krankheiten wie Q-Fieber, Hepatitis B und Hepatitis C beherbergen können“, erklärt Klimpel.
Eine Übertragung von der Bettwanze auf den Menschen ist jedoch noch nicht belegt und soll nun in Zusammenarbeit mit Kollegen des Bernhard-Nocht-Institutes für Tropenmedizin in Hamburg (BNI) geprüft werden.
„Fest steht, dass Globalisierung und anthropogener Klimawandel sich auf die Verbreitung invasiver Arten und die Vektorendichte auswirkt. Als Konsequenz wird in den nächsten Dekaden die Verbreitung der durch Vektoren übertragenen Infektionskrankheiten stark zunehmen“, resümiert Klimpel.

19.12.2012, Alfred-Wegener-Institut für Polar- und Meeresforschung
Tod im Ei: Als Embryos haben Gemeine Strandkrabben dem Klimawandel nichts entgegenzusetzen
Gemeine Strandkrabben gehörten bisher zu jenen Tierarten, von denen Wissenschaftler glaubten, der Klimawandel könne ihnen kaum etwas anhaben. Ein Grund: Die Scherenträger sind, was Temperatur betrifft, nicht wählerisch und fühlen sich im acht Grad kalten Atlantik ebenso wohl wie im 20 Grad warmen Mittelmeer. Eine Studie deutscher und italienischer Wissenschaftler belegt nun jedoch, dass Strandkrabben zu einem bestimmten Zeitpunkt ihres Lebens ausgesprochen empfindlich auf Temperatursprünge reagieren – als Embryo im Ei. Ist der Krabbennachwuchs in seiner ersten Lebensphase zu großer Wärme ausgesetzt, beginnt im Ei eine tödliche Kettenreaktion.
Die Fischer in der Lagune von Venedig fangen Strandkrabben am liebsten kurz nachdem sich die Tiere gehäutet haben. Der neue Panzer der Scherenträger ist zu diesem Zeitpunkt noch nicht ausgehärtet, das Pulen der Krabben daher ein Kinderspiel. Ein Kilogramm Strandkrabben kostet auf Venedigs Fischmärkten zwischen 60 und 70 Euro. Die Krabben gelten also ohne Weiteres als Delikatesse.
Ob es angesichts des Klimawandels jedoch auch in Zukunft genügend Strandkrabben in der Lagune von Venedig geben wird, darüber hat sich bis vor Kurzem niemand so richtig Gedanken gemacht. Denn Carcinus maenas, so der lateinische Name der Gemeinen Strandkrabbe, zeigte sich bisher in Sachen Wohlfühltemperatur ausgesprochen flexibel. Die etwa handteller-großen Krabben leben sowohl an der kalten Atlantikküste Norwegens und Nordamerikas als auch im vergleichsweise warmen Mittelmeer – wobei die Fischer Venedigs der Schwesternart Carcinus aestuarii nachstellen. „Beide Arten sind so eng miteinander verwandt, dass sie sich durchaus auch paaren und gemeinsame Nachkommen zeugen“, sagt der italienische Biologe Dr. Folco Giomi.
Er und Kollegen haben im Zuge eines Gastaufenthaltes am Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft untersucht, ob die Mittelmeer-Strandkrabbe Carcinus aestuarii Hitzeperioden wirklich so schadlos übersteht, wie bisher angenommen wurde. Fündig wurde das deutsch-italienische Wissenschaftlerteam dabei beim Krabbennachwuchs. „Die Weibchen der Mittelmeer-Strandkrabbe legen ihre Eier nicht auf den Grund der Lagune, wo das Wasser vergleichsweise kühl ist“, sagt Folco Giomi. Stattdessen tragen die Tiere ihren Nachwuchs in den ersten Tagen auf dem Rücken und nehmen ihn mit zur Futtersuche in das Flachwasser.
Ein heikler Schritt, denn: Erwärmt sich zum Zeitpunkt des Laichens die Mittelmeerregion aufgrund einer Hitzewelle, steigt vor allem die Temperatur des Flachwassers sprunghaft an. „Unsere Untersuchungen haben gezeigt, dass schon ein Anstieg der Wassertemperatur von 16 auf 24 Grad Celsius genügt, um die Embryos in den Eiern in ernsthafte Gefahr zu bringen“, erklärt der Wissenschaftler. So würden die jungen Krabben versuchen, der Wärme zu trotzen, indem sie ihren Stoffwechsel um das Neunfache beschleunigen. Die Folge: In Windeseile verbrauchen die Tiere alle Energiereserven im Ei. „Unter solchen Bedingungen kann sich der Krabbenembryo nicht normal entwickeln. Er stirbt“, sagt Folco Giomi.
Dieses alarmierende Verhalten konnte das Wissenschaftlerteam allerdings nur bei Embryos nachweisen, die sich in den ersten zwei von vier Entwicklungsphasen befanden. Ein Stadium, in dem der Nachwuchs kaum mehr darstellt als einen Haufen Zellen. „Ab der dritten Entwicklungsstufe gelang es den Embryonen dann, ihren Stoffwechsel abzubremsen und sich wie ein ausgewachsenes Tier auf die gestiegene Umgebungstemperatur einzustellen. Diese Beobachtung war ganz neu für uns und hat uns sehr beeindruckt“, erzählt Folco Giomi.
Bei dieser Erkenntnis allein aber wollten es die Wissenschaftler nicht beruhen lassen. Zu viele Fragen knüpften sich an – zum Beispiel jene, ob außergewöhnliche Hitzewellen auch schon in der Vergangenheit Spuren im Krabbenbestand hinterlassen hatten? Dazu verglichen die Forscher die Krabben-Fangdaten der venezianischen Fischer aus den Jahren 1940 bis 2009 mit den Wetterdaten jener Zeit. „Bei diesem Vergleich stellten wir fest, dass die Fischer die Folgen einer außergewöhnlichen Hitzewelle zur Laichzeit sehr wohl zu spüren bekommen – allerdings immer erst zwei Jahre später, also dann, wenn jene Krabben, die als Embryonen gestorben waren, eigentlich selbst hätten Eier tragen sollen. Die Tiere benötigen nämlich genau diese zwei Jahre, um vom Jungtier zur geschlechtsreifen Krabbe heranzuwachsen“, sagt Folco Giomi.
Er und sein deutscher Kollege Prof. Hans-Otto Pörtner ziehen aus diesen Forschungsergebnissen zwei Schlussfolgerungen. „Die Studie zeigt zum einen, dass im Zuge des Klimawandels auch jene Arten betroffen sind, die über ein vergleichsweise großes Temperaturfenster verfügen. Dies gilt wohl immer in Gebieten, in denen sie die Grenzen ihrer temperaturabhängigen Verbreitung erreichen“, sagt Hans-Otto Pörtner, Leiter der Arbeitsgruppe Integrative Ökophysiologie am Alfred-Wegener-Institut. „Diese Erkenntnis ist wirklich wichtig“, fügt Folco Giomi hinzu: „Wenn wir nämlich davon ausgehen müssen, dass in einigen Regionen im Zuge des voranschreitenden Klimawandels selbst temperatur-robuste Arten wie die Strandkrabbe nur noch in kleineren Mengen vorkommen, haben Arten mit einer höheren Temperaturempfindlichkeit noch schlechtere Zukunftsaussichten.“
Zum anderen müssten Wissenschaftler und Fischer die Ergebnisse zum Anlass nehmen, über eine nachhaltige, dem Klimawandel angepasste Krabbenfischerei-Strategie nachzudenken. „Die im Mittelmeer lebenden Strandkrabben sitzen angesichts der zunehmenden Erwärmung in einer geografischen Sackgasse. Sie finden bei Hitzewellen nur noch selten Rückzugsräume, weshalb wir nicht ausschließen können, dass die Art in einigen Regionen aussterben wird“, sagt Hans-Otto Pörtner.
Die Fischer von Venedig können laut Folco Giomi einen Beitrag dazu leisten, diese Entwicklung in ihrer Lagune hinauszuzögern. Giomi: „Wann immer zur Laichzeit der Krabben eine Hitzewelle über die Mittelmeerregion rollt, sollten die Fischer sich diese im Kalender notieren und darauf achten, dass sie zwei Jahre später nur wenige oder keine Tiere fangen.“
Originalveröffentlichung: F. Bartolini, A. Barausse, H-O. Pörtner, F. Giomi (2012): Climate changes reduces offspring fitness in littoral spawners: a study integrating organismic response and long-term series und ist im Fachjournal Global Change Biology erschienen. (doi: 10.111/gcb12050)

19.12.2012, Staatliche Naturwissenschaftliche Sammlungen Bayerns
Uhu darf in die Freiheit – dank DNA-Test
Forscher der Zoologischen Staatssammlung München klärten mittels genetischer Methoden die Herkunft eines Uhus auf, welcher eine für einheimische Uhus untypische Gefiederfärbung aufwies. Da vermutet wurde, dass es sich bei dem Tier, welches sich gegenwärtig in einem Vogelpark im Sauerland befindet, um eine Schwesterart aus Asien handelte, konnte eine von Naturschützern geforderte Auswilderung des Vogels nicht genehmigt werden. Die gentechnische Analyse winziger Gewebeproben des Tieres erlaubte es jedoch nun, den Raubvogel als eindeutig europäisches Tier zu identifizieren, welches eine mögliche Auswilderung oder den Einsatz als Zuchttier ermöglicht.
Neuer Erfolg im Barcoding-Projekt der Zoologischen Staatsammlung München
Forscher der Zoologischen Staatsammlung München klärten mit Hilfe genetischer Methoden die Herkunft eines Uhus auf. Vor etwa einem Jahr landete die Eule in einer Auffangstation, weil sie im Stadtgebiet von Duisburg und Mülheim/Ruhr offenbar die Nähe zum Menschen suchte und sehr zutraulich wirkte. Wahrscheinlich wurde das Tier von Menschen aufgezogen. Seither lebt der Uhu in einer Greifvogelauffang- und Wiederauswilderungsstation im Sauerland. Das Tier zeigte eine für heimische Uhus untypische Gefiederfarbe. Deshalb vermutete der Leiter dieser Station, Winfried Limpinsel, dass es sich um ein entflogenes Tier einer asiatischen Schwesterart des Uhus handelt. Eine Auswilderung kann unter diesen Voraussetzungen nicht genehmigt werden. Da Naturschützer diese Auswilderung jedoch forderten, wandte sich Dr. Randolph Kricke, Artenschutzbeauftragter vom Amt für Naturschutz und Grünplanung der Stadt Duisburg, an die Zoologische Staatssammlung in München, mit der Bitte, die Herkunft des Tieres festzustellen.
Der Genforscher Jerome Moriniere klärte die Zugehörigkeit des Tieres durch eine genetische Untersuchung eindeutig auf. Dabei verwendete er winzige Gewebeproben aus den Federkielen der Eule und griff zum Vergleich auch auf gespeicherte Genproben in der weltweiten Gen-Datenbank des „Barcoding“-Projektes zurück. Er konnte zeigen, dass es sich bei dem fraglichen Uhu einwandfrei um einen europäischen Uhu (Bubo bubo) handelt und nicht um einen importierten Bengalenuhu (Bubo bengalensis) aus Asien. Das Amt für Umwelt und Grün der Stadt Duisburg prüft derzeit die Chancen, den Uhu auf ein Leben in Freiheit vorzubereiten, oder – falls das nicht gelingt – für ein Zuchtprogramm im Zoo Duisburg einzusetzen.
Beim Projekt „Barcoding Fauna Bavarica“ untersuchen Wissenschaftler der Zoologischen Staatsammlung einen bestimmten Genabschnitt, das so genannte COI-Gen, aller einheimischen Tierarten und speichern diesen in einer Online-Datenbank. Dieser Genabschnitt besitzt dabei für eine Art eine ähnliche Bedeutung wie ein Barcode auf einem Lebensmittel im Supermarkt. Das bayerische Projekt ist seit 2009 Teil des Verbundprojektes „International Barcode of Life (iBOL)“ mit Sitz in Guelph/Kanada, welches genetische Barcodes aller Tierarten weltweit erfasst. Mit dieser Gendatenbank können Wissenschaftler künftig unbekannte Arten kostengünstig, schnell und über das Internet identifizieren. Seit 2012 wird das bayerische Projekt durch das umfassende German Barcode of Life-Projekt in Zusammenarbeit mit mehreren deutschen Forschungsinstituten ergänzt, das nun die gesamte Flora und Fauna Deutschlands im Visier hat.
Der Fall des Duisburger Uhus zeigte beispielhaft, wie das Barcoding künftig funktionieren wird. Experten aus Zoos oder aus anderen Forschungsbereichen kooperieren mit wissenschaftlichen Institutionen wie der Zoologischen Staatsammlung München, um Arten einwandfrei zu identifizieren. Für den Uhu bedeutet dieses Ergebnis zudem einen Fahrschein in die Freiheit, für ihn ein willkommenes Weihnachtsgeschenk.
Der Uhu ist die größte Eulenart der Welt und zählt in Deutschland zu den streng geschützten Vogelarten. Sein Bestand ist in Deutschland vor allem durch Lebensraumverluste stark zurückgegangen. Seit zwei Jahrzehnten erholen sich die Bestände wieder, zudem konnte der Uhu in verschiedenen Regionen Deutschlands neu angesiedelt werden. Auch im Ruhrgebiet ist er auf dem Vormarsch und brütet an der einen oder anderen Stelle bereits wieder.

21.12.2012, Universität Zürich
Auf und ab der Biodiversität nach dem Massensterben
Das Klima nach dem bisher grössten Massensterben vor 252 Millionen Jahren war zunächst kühl, später sehr warm und dann wieder kühl. Dank den kühleren Temperaturen nahm die Vielfalt der marinen Fauna stark zu, wie Paläontologen der Universität Zürich rekonstruieren konnten. Das wärmere Klima, verbunden mit einem hohen CO2-Gehalt in der Atmosphäre, führte zuerst zu neuen kurzlebigen Arten. Längerfristig wirkte sich diese Klimaveränderung aber negativ auf die Biodiversität aus und verursachte ein Artensterben.
Bisher wurde angenommen, dass sich Fauna und Flora nach dem riesigen Artensterben am Ende des erdgeschichtlichen Zeitalters Perm vor 252 Millionen Jahren nur langsam erholten. Komplexe ökologische Lebensgemeinschaften traten gemäss Lehrmeinung typischerweise erst wieder in der Mitteltrias auf, also vor 247 Millionen Jahren. Jetzt zeigt ein schweizerisches Team unter der Leitung des Paläontologen Hugo Bucher von der Universität Zürich, dass marine Tiergruppen wie Ammonoideen und Conodonten (Mikrofossilien) bereits drei bis vier Millionen Jahre früher, also noch in der Untertrias, einen ersten Höchststand erreichten.
In «Nature Geoscience» zeichnen die Wissenschaftler einen detaillierten Temperaturverlauf nach. Sie zeigen, dass Klima und Kohlendioxid-Gehalt der Atmosphäre während der Untertrias stark schwankten, und wie sich das auf die marine Biodiversität und Landpflanzen auswirkte.
Kühlere und sehr warme Klimaphasen wechseln sich ab
Für ihre Klimarekonstruktion analysierten Bucher und Kollegen die Zusammensetzung der Sauerstoff-Isotope in Conodonten. Conodonten sind Überreste von einst im Meer lebenden Chordatieren. Gemäss den Untersuchungen war das Klima am Beginn der Trias, in der Zeit vor 249 Millionen Jahren, kühl. Dieser kühleren Phase folgte eine kurze, sehr warme Klimaphase. Am Ende der Untertrias, also in der Zeit zwischen 247,9 und 245,9 Millionen Jahren, herrschten erneut kühlere Bedingungen vor.
Klima und Kohlenstoff-Kreislauf beeinflussen Biodiversität
Anschliessend untersuchten die Wissenschaftler, wie sich das Klima auf die Entwicklung von Fauna und Flora ausgewirkt hatte. «In den kühleren Phasen stieg die Biodiversität am stärksten an», erläutert der Paläontologe Bucher. «Die dann folgende extreme Warmphase führte dagegen zu grossen Veränderungen in der marinen Fauna und zu einem grossen ökologischen Wechsel der Flora». Bucher und sein Team können zeigen, dass diese Verminderung der Biodiversität in den Warmphasen mit starken Schwankungen in der Kohlenstoff-Isotopen-Zusammensetzung der Atmosphäre korrelieren. Diese wiederum standen in direktem Zusammenhang mit Kohlendioxid-Gasen, die aus vulkanischen Ausbrüchen in der Sibirischen Magmatischen Grossprovinz stammten.
Arten entstehen und sterben aus
Durch die Klimaänderungen konnten sich in der Untertrias Conodonten- und Ammonoideen-Faunen anfänglich sehr schnell erneuern, indem ungewöhnlich kurzlebige Arten entstanden. Doch der Abbau des überschüssigen CO2 durch Primärproduzenten wie Algen und terrestrische Pflanzen hatte langfristig negative Auswirkungen: Der Abbau dieser riesigen Mengen organischer Materie verbrauchte einen Grossteil des im Wasser vorhandenen Sauerstoffs. Als Folge des Sauerstoffmangels in den Ozeanen starben viele marine Arten aus. «Unsere Untersuchungen zeigen, dass grössere klimatische Veränderungen sowohl zum Entstehen als auch zum Aussterben von Arten führen können. Dabei ist es wichtig, sowohl Aussterberaten als auch die Rate neu auftretender Arten zu berücksichtigen», so Bucher.
Bucher und seine Kollegen sind überzeugt, dass Klimaveränderungen und das Ausströmen vulkanischer Gase wichtige Treiber für die biotische Erholung in den Ozeanen der Untertrias waren: Kühlere Klimaphasen begünstigen die biologische Diversifikation. Wärmere Klimaphasen und sehr hohe CO2-Gehalte in der Atmosphäre dagegen können sich schädlich auf die Biodiversität auswirken.
Literatur:
Carlo Romano, Nicolas Goudemand, Torsten W. Vennemann, David Ware, Elke Schneebeli-Hermann, Peter A. Hochuli, Thomas Brühwiler, Winand Brinkmann, Hugo Bucher. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience.

20.12.2012, Senckenberg Forschungsinstitut und Naturmuseen
Die neue Weltordnung der Tiere: Wallace-Karte nach fast 150 Jahren aktualisiert
Basierend auf aktuellen Verbreitungsdaten und Stammbäumen von mehr als 20.000 Tierarten haben Wissenschaftler der Universität Kopenhagen, des Biodiversität und Klima Forschungszentrums und weiterer Einrichtungen eine neue Karte der globalen Faunenregionen erstellt. Damit aktualisieren sie die alte zoogeographische Karte, mit der Alfred Russell Wallace 1876 die Welt in sechs Regionen aufteilte, und auf der bis heute unser Verständnis der globalen Tierwelt basiert: Die online in Science Express publizierte Karte liefert grundlegende Informationen über die Vielfalt des Lebens auf unserem Planeten und ist von enormer Bedeutung für zukünftige Biodiversitätsforschung.
Für das Verständnis des Lebens auf der Erde müssen wir wissen, warum Arten so auf der Erde verteilt sind, wie das heute der Fall ist. Die von einem internationalen Wissenschaftlerteam entwickelte neue Weltkarte teilt die Natur von der Neoarktis bis nach Australien in elf zoogeographische Regionen ein. Sie zeigt auch, wie diese Regionen aufgrund evolutionär bedingter Verwandtschaftsverhältnisse zueinander in Beziehung stehen. Zum ersten Mal werden geographische Verbreitungsdaten von mehr als 20.000 Arten kombiniert, und zwar für fast alle bekannten Säugetiere, Vögel und Amphibien. Die Studie wurde federführend von einem Team des Center for Macroecology, Evolution and Climate (CMEC) an der Universität Kopenhagen erstellt. Beteiligt waren fünfzehn Wissenschaftlerinnen und Wissenschaftler aus mehreren Ländern, darunter Dr. Susanne Fritz vom Biodiversität und Klima Forschungszentrum in Frankfurt. Für die Studie wurden über 20 Jahre hinweg Daten erhoben und ausgewertet.
Den ersten Anlauf, die natürliche Welt aus evolutionsbiologischer Sicht zu beschreiben, unternahm 1876 der britische Naturforscher Alfred Russel Wallace (1823 bis 1913). Er hatte zur gleichen Zeit wie Charles Darwin (1809 bis 1882) die Theorie der natürlichen Auslese entdeckt. Die aktuelle Studie ist ein lange überfälliges Update einer der grundlegenden Karten der Naturwissenschaften. „Fast 140 Jahre nach Wallace’ Version sind wir nun in der Lage, dank äußerst detaillierter Informationen zu Tausenden von Wirbeltierarten die natürliche Welt umfassend zu beschreiben“, so Dr. Ben Holt vom CMEC, einer der Leitautoren der Studie. Susanne Fritz, die 2011 vom CMEC ans Biodiversität und Klima Forschungszentrum kam, betont, dass die neue Einteilung ein wachsendes Verständnis der globalen Zusammenhänge belegt: „Seit der Wallace-Karte wurden Tausende neue Arten entdeckt, die jetzt einbezogen werden konnten.“
Ermöglicht wird die neue Karte durch die moderne Technologie der DNA-Sequenzierung. Eingang fanden auch Hunderttausende Datensätze zu den Vorkommen von Säugetieren, Vögeln und Amphibien auf der ganzen Welt. Die neue Weltkarte kann für jede Tierklasse in fein gegliederte geografische Zonen unterteilt werden. Sie wird zur freien Nutzung zur Verfügung gestellt und soll nicht nur die gesamte biologische Grundlagenforschung voranbringen, sondern auch neue Ansätze für die Planung von Naturschutzmaßnahmen und für das Management der biologischen Vielfalt liefern.
„Die Karte liefert grundlegende Informationen für zukünftige ökologische und evolutionäre Forschung. Von großer Bedeutung ist sie auch für die Frage, wie Natur künftig bewahrt werden soll, angesichts des globalen Wandels und der schon spürbaren Biodiversitätskrise. Während die Planung von Schutzgebieten bisher vorrangig nach dem Kriterium erfolgte, welche Arten an einem bestimmten Ort vorkamen, können wir jetzt neue Prioritätskriterien definieren. Diese beruhen dann auf der Millionen Jahre währenden Evolutionsgeschichte“, so Dr. Jean-Philippe Lessard, der zweite Kopenhagener Leitautor der Studie, der derzeit an der kanadischen McGill University forscht.
Anwendung findet die neue Einteilung in der Biogeographie, in der Ökologie und Evolutionsforschung. Prof. Dr. Katrin Böhning-Gaese, Direktorin des Biodiversität und Klima Forschungszentrums, unterstreicht die Bedeutung der aktualisierten Wallace-Karte: „Gerade für den Naturschutz ist die neue Weltkarte von großer Bedeutung: Es hat sich in den letzten Jahren gezeigt, dass die Verwandtschaftsbeziehungen der Arten zwingend in die Naturschutzplanung einbezogen werden müssen. Es macht einen Unterschied, ob eine Art unter vielen ähnlichen, nahe verwandten Arten ausstirbt, oder ob die Art der einzige und letzte Vertreter einer lange isolierten Stammeslinie ist.“ Ein Beispiel hierfür ist das auf der neuen Karte als eigene zoogeographische Region verzeichnete Madagaskar: Auf der Insel vor der Ostküste Mosambiks im Indischen Ozean leben zahlreiche verwandtschaftlich isolierte, einzigartige Wirbeltiergruppen, wie zum Beispiel das Fingertier. Dies wird in globalen Naturschutzinitiativen noch nicht hinreichend berücksichtigt.
Publikation:
Ben G. Holt, Jean-Philippe Lessard, Michael K. Borregaard, Susanne A. Fritz, Miguel B. Araújo, Dimitar Dimitrov, Pierre-Henri Fabre, Catherine H. Graham, Gary R. Graves, Knud A. Jønsson, David Nogués-Bravo, Zhiheng Wang, Robert J. Whittaker, Jon Fjeldså, Carsten Rahbek: An update of Wallace’s zoogeographic regions of the world. – Science Express, 20.12.2012

21.12.2012, Universität Bielefeld
Deutsche und israelische Feuersalamander im Vergleich
Forschungskooperation der Universität Bielefeld mit 1,6 Millionen Euro gefördert
In einer sich ständig verändernden Welt kann die Anpassung an neue Umweltbedingungen überlebenswichtig sein. Besonders Amphibien zeigen sich flexibel. Die Larven des einheimischen Feuersalamanders zum Beispiel haben die Fähigkeit entwickelt, sowohl in stehenden als auch in fließenden Gewässern aufwachsen zu können. Biologen der Universität Bielefeld unter Leitung von Dr. Sebastian Steinfartz haben 2009 zeigen können, dass sich diese Anpassung auch auf Ebene ihrer Gene zeigt. Über tausende von Jahren entsteht auf diese Weise eine neue Art. Im Vergleich mit ihrer israelischen Schwesternart wollen nun die Bielefelder Biologen gemeinsam mit deutschen und israelischen Kollegen herausfinden, ob beide Arten sich gleichermaßen an ihre Umweltbedingungen angepasst haben. Ihre Forschung wird vom Bundesministerium für Bildung und Forschung von 2013 bis 2017 mit über 1,6 Millionen Euro gefördert.
Vor vielen Millionen Jahren gehörten sie noch zu einer Linie: der deutsche Feuersalamander (Salamandra salamandra) und seine israelische Schwesternart (Salamandra infraimmaculata). Mittlerweile leben sie weit voneinander entfernt, haben sich in unterschiedliche Arten aufgespalten und mussten sich doch an ähnliche Umweltbedingungen anpassen. Diese parallele, aber unabhängige Entwicklung machen sich die Wissenschaftler zu Nutze. Mit Hilfe von Experimenten, ökologischen Lebensraumcharakterisierungen und genomischen Analysen wollen sie herausfinden, ob an den ähnlichen Adaptationsprozessen bei beiden Arten dieselben oder ganz unterschiedliche Gene beteiligt sind. In Bielefeld sollen vor allem die experimentellen Ansätze mit den Larven und Genexpressionsanalysen stattfinden. Die Wissenschaftler erhoffen sich unter anderem Antwort auf die Frage, wie die genetischen Mechanismen von parallelen Lebensraumanpassungen aussehen können.
An der Forschung beteiligen sich Dr. Sebastian Steinfartz, Leiter der Arbeitsgruppe Molekulare Ökologie und Verhalten am Lehrstuhl für Verhaltensforschung der Universität Bielefeld, Dr. Arne Nolte vom Max-Planck Institut für Evolutionsbiologie (Plön) sowie Professor Dr. Leon Blaustein und Professor Dr. Alan Templeton (beide Universität Haifa, Israel).
Die Forschungsförderung ist Teil der Deutsch-Israelischen Projektkooperation (DIP). Das Exzellenzprogramm wurde 1997 vom Bundesministerium für Bildung und Forschung eingerichtet, um innovative deutsch-israelische Forschungsprojekte aus allen Wissenschaftsbereichen zu fördern. Jährlich werden bis zu vier Projektanträge ausgewählt und für bis zu fünf Jahre unterstützt.

21.12.2012, Leibniz Universität Hannover
Wozu Spargel im Meerwasser?
Salztolerante Pflanzen reinigen Prozesswasser aus der Fischzucht
Fast jeder zweite Seefisch, der heutzutage verzehrt wird, stammt aus einer Fischzuchtanlage. Die Überfischung der Meere und der gleichzeitig ständig wachsende Bedarf an marinen Speisefischen führen zu einem Boom der kommerziellen Fischzucht. Zusätzlich zu den Aquakulturen an den Küsten gibt es im Moment einige wenige Projekte zur landbasierten Produktion von Meeresfischen. Dort werden Schwarmfische wie Wolfsbarsche, Doraden oder Makrelen in großen Haltungstanks ohne Zugang zum Meer und unabhängig von natürlichem Meerwasser gezüchtet.
Ein innovatives Projekt unter Beteiligung der Leibniz Universität Hannover forscht daran, das Prozesswasser aus diesen Fischzuchtanlagen mit salztoleranten Pflanzen wie Meeresspargel oder Strandaster zu reinigen, Nährstoffe zu nutzen und das Wasser dann wieder der Fischzucht zuzuführen. So entsteht ein geschlossener Kreislauf, in dem das teure, künstlich hergestellte Meerwasser immer wieder genutzt werden kann.
Ein besonderer Clou: Die Pflanzen sind nicht nur Biofilter, sondern können selber als Nahrung dienen. „Die Pflanzen sollen eine gute Absatzchance als Lebensmittel haben, daher haben wir uns bemüht, sie geschickt auszuwählen“, berichten Projektleiterin Prof. Jutta Papenbrock und Doktorandin Anne Buhmann vom Institut für Botanik der Leibniz Universität. Die Wahl fiel auf salztolerante Pflanzen, die anderswo gerne gegessen werden oder sogar als Delikatesse gelten: der so genannte Meeresspargel, auch Queller genannt, die Strandaster und der Hirschhornwegerich. Der Queller wird in Küstenregionen Frankreichs gesammelt und in Restaurants und auf Märkten als Gemüse angeboten. Strandaster und Hirschhornwegerich, der dem Rucola ähnelt, können ebenfalls gedünstet als Gemüse oder auch roh als würziger Salat verzehrt werden.
In Versuchsbecken in Hannover testen die Experten die Kultivierung der Pflanzen mit Prozesswasser aus der Fischzucht – zum einen auf Kies oder Sand, zum anderen auf Styroporplatten, die direkt auf dem Wasser schwimmen. Die Ergebnisse werden in einer Fisch-Pflanzen-Kreislaufanlage im Saarland in größerem Maßstab umgesetzt. Verbunden mit einer Fischzuchtanlage in Völklingen soll in den kommenden Jahren ein etwa 300 Quadratmeter großes Gewächshaus gebaut werden. Partner in dem von der Deutschen Bundesstiftung Umwelt (DBU) geförderten Projekt sind unter anderem die Hochschule für Technik und Wirtschaft des Saarlandes und die Firma Neomar. Das Freiburger Öko-Institut e.V. wird das Projekt hinsichtlich Nachhaltigkeit bilanzieren.
Wie ist es um die Lebensmittelqualität der Pflanzen bestellt, wenn sie aus „Abwässern“ gespeist werden? Hier geben die Wissenschaftler Entwarnung. „Es sind keine Schadstoffe im Wasser“, sagt Prof. Papenbrock. Antibiotika würden in der Kreislauffischzucht nicht verwendet. Anders sehe das in offenen Anlagen in Vietnam oder Indien aus. „Mein Traum wäre ein Transfer in die Tropen. Dort könnte man mit den Pflanzen als Biofilter und -katalysator Antibiotika und Chemikalien entgiften.“

Dieser Beitrag wurde unter Wissenschaft/Naturschutz abgelegt und mit , , , verschlagwortet. Setze ein Lesezeichen auf den Permalink.

Kommentar verfassen