Wissenswertes über Fledermäuse

Palaeochiropteryx tupaiodon (Hessisches Landesmuseum Darmstadt)

Palaeochiropteryx tupaiodon (Hessisches Landesmuseum Darmstadt)

Mit ihrem Echoortungssystem (oder auch Ultraschallortung) haben die Fledermäuse eine sehr komplizierte und effektive Methode entwickelt, die es ihnen ermöglicht, sich im Dunkeln zurechtzufinden und Insekten zu jagen, ohne ihre Augen einzusetzen. Dabei stoßen sie Ultraschallwellen aus, die von Objekten als Reflexionen zurückgeworfen werden. Die einzelnen Echos werden von der Fledermaus aufgenommen und in die richtige Abfolge gebracht. Durch die Zeitunterschiede kann das Gehirn die Umgebung erfassen und somit orten, wie weit ein Baum oder Insekt entfernt ist und sogar mit welcher Geschwindigkeit und Richtung sich ein Beutetier bewegt. Beim Großen Hasenmaul erreicht die Lautstärke des Rufes bis zu 140 Dezibel.

Lange Zeit nahm man an, dass Fledermäuse über extrem gute Augen verfügten, da sie sich in absoluter Dunkelheit zurechtfinden. Im 18. Jahrhundert unternahm der italienische Wissenschaftler Lazzaro Spallanzani erste Versuche mit Fledermäusen und Eulen, in denen er die Tiere in dunklen Räumen fliegen ließ. Während alle Eulen scheiterten, fanden sich Fledermäuse gut zurecht. Einige Zeit später führte er weitere Versuche durch, diesmal mit Fledermäusen, denen er die Augen ausgestochen hatte. Auch diese Tiere konnten ohne Probleme fliegen, während Exemplare mit versiegelten Ohren zu Boden fielen.
Als sich Hiram Maxim, der Erfinder des Maschinengewehrs, im Jahre 1913 mit Sonarsystemen zur Navigation auf See und zur Ortung der gesunkenen Titanic beschäftigte, glaubte er auf dem richtigen Weg zu sein, doch er irrte sich, denn er nahm an, dass Fledermäuse niederfrequente Töne mit dem Schlagen ihrer Flügel erzeugen würden. Erst als George W. Pierce kurz vor dem Zweiten Weltkrieg einen Schalldetektor für Hochfrequenztöne entwickelte, wurde die wahre Beschaffenheit des Fledermaussonars erkannt.
Damit das Echoortungssystem richtig funktionieren kann und alle Möglichkeiten optimal ausgeschöpft werden, ist eine spezielle Anpassung der verschiedenen Organe notwendig. So sind bei den Fledermäusen viele Körperteile genau auf den Gebrauch der Echoortung ausgelegt. Allerdings benutzen nicht alle Fledermäuse ihre Ortungssysteme. So verwenden vor allem insekten- und nektarfressende Fledermäuse den Ultraschall, während große Fledermäuse gewöhnlich darauf verzichten.
Der Ruf besteht meistens aus einer Serie von fünf oder mehr verschiedenen Tönen, die eine Dauer von weniger als einer Sekunde bis zum Hundertstel einer Sekunde haben können, siehe auch Chirp. Fledermäuse können Frequenzen zwischen 9 kHz und 200 kHz ausstoßen. Erwachsene Menschen nehmen meist nur Frequenzen zwischen 16 Hz und 18 kHz wahr. Mit Hilfe eines Bat-Detektors können Ultraschallrufe auch für Menschen hörbar gemacht werden. Dieser wandelt die Rufe in Schallwellen niedrigerer Frequenz um, die in den Hörbereich des Menschen fallen.
Zur Jagd könnten die Fledertiere theoretisch sowohl niedrige als auch höhere Frequenzen einsetzen, allerdings haben hochfrequente Rufe viele Vorteile, wie kleinere Wellenlängen, die eine genauere räumliche Trennschärfe ermöglichen und die klarere Abgrenzung des Widerhalls von Hintergrundgeräuschen. Tiefere Frequenzen, die größere Wellenlängen besitzen, umspülen gleichsam kleine Objekte und senden daher kaum Echos zurück.
In Baumnähe rufen die Jäger nur leise, um ein Überschneiden mehrerer Echos zu verhindern (Echosalat), während sie im offenen Gelände laute Schreie ausstoßen. Eine Fledermaus passt ihren Ruf (innerhalb ihrer arttypischen Möglichkeiten und Grundstruktur) ständig an die Situation an. In offenem Gelände sind die Rufe länger, lauter und weniger frequenzmoduliert, in der Nähe von Hintergründen und beim Fang eines Insekts werden sie kürzer und stärker frequenzmoduliert.
Ein typischer Fledermausruf besteht aus zwei Komponenten, nämlich aus der Komponente mit konstanter Frequenz (CF) und einer Komponente, deren Frequenz mit der Zeit abnimmt (FM). Jedoch unterscheiden die Rufe sich stark zwischen den Arten und Gruppen. Hufeisennasen besitzen z. B. einen sehr langen (viele ms), konstantfrequenten Ruf, dessen Anfang und Ende sehr schwach frequenzmoduliert ist. Andere Arten nutzen sehr kurze, nur frequenzmodulierte Rufe, andere dagegen etwas längere mit einem ausführlicheren konstantfrequenten Teil. Zusätzlich unterscheiden sich die Rufe noch in der Anzahl der Harmonischen.
Die CF-Komponente des Rufs hat eine konstante Frequenz (CF = „constant frequency“), vergleichbar mit der einer Stimmgabel. Sie hat eine hohe Reichweite und liefert der Fledermaus ein einfarbiges, lang andauerndes Echo. Nur wenige Fledermäuse (z. B. die Hufeisennasen) verwenden vor allem CF-Rufe (mit einem kleinen FM-Teil am Anfang und/oder Ende). Andere Arten verwenden als Suchlaute im offenen Luftraum sogenannte quasi-konstant-frequente Rufe, die nur schwach frequenzmoduliert sind (also quasi-konstant-frequent).
Die FM-Komponente der Fledermausrufe hat eine mit der Zeit abnehmende Frequenz (FM = „frequency modulated“). Sie hat eine geringere Reichweite als die CF-Komponente, liefert dafür aber ein Echo, mit welchem auch Oberflächenstrukturen erkannt werden. FM-Rufe werden meist bei der Verfolgung von Beutetieren verwendet. Die meisten Fledermäuse verwenden ausschließlich FM-Rufe mit unterschiedlich starker Frequenzmodulation.
Der Ruf wird von den Fledermäusen, wie bei Säugetieren üblich, im Kehlkopf erzeugt, wo Luft zwischen zwei Membranen (den Stimmbändern) hindurchgepresst wird und diese dadurch in Schwingungen geraten. Durch das Anspannen der Muskeln, die die Membranen halten, können unterschiedliche Tonhöhen erzeugt werden.
Bevor die Schallwellen aus dem Mund oder aus der Nase austreten, werden sie im Kehl- und Rachenraum verstärkt und gefiltert. Fledermäuse, die durch die Nase rufen, haben oft komplizierte Nasenaufsätze, welche die Schallwellen stark bündeln und in die richtigen Richtungen lenken. Fledermäuse mit solchen Aufsätzen, wie z. B. die Hufeisennasen, haben oft kleinere Ohren.
Fledermäuse sind zur Modulation ihres Rufs fähig, um Insekten auch in einer komplexen Umgebung erjagen zu können.
Die trichterförmigen Ohren der Fledermäuse sind sowohl gegenüber der Richtung der Echos als auch gegenüber der Klangqualität sehr empfindlich. Sie können die Ohren drehen und neigen, um bestimmte Schallquellen genauer zu orten. Jedes Ohr empfängt unabhängig von dem anderen.
Die Hörschnecke, welche besonders an die Jagdfrequenz angepasst ist, besitzt sehr viele Windungen, wodurch sie eine differenziertere Frequenzanalyse besitzen als andere Säugetiere, wie zum Beispiel Menschen. Nur Hufeisennasen besitzen in dem schmalen, wenige Kilohertz umfassenden Frequenzbereich, in dem sie auch rufen, eine hochdifferenzierte Frequenzanalyse. Ihre Gehörschnecke deckt diesen Bereich fein ab, wodurch eine sogenannte „akustische Fovea“, vergleichbar der Fovea (Gelber Fleck) in unserem Auge, entsteht.
Nachdem die Echos in den Ohren aufgenommen wurden, wird diese Information an das Gehirn weitergeleitet, wo die verschiedenen Echos anhand ihrer Frequenzen in die richtige Reihenfolge gebracht und dann analysiert werden. Je länger ein Echo benötigt, um nach dem Ruf wieder das Ohr zu erreichen, desto weiter ist der Reflektor entfernt. Ein Zeitabstand von einer Millisekunde entspricht etwa einer Objektentfernung von 17 Zentimeter (zurückgelegter Schallweg zum Objekt hin und zurück also 34 cm). Da die Abstandswahrnehmung von der Schallgeschwindigkeit und damit von der Temperatur der Luft abhängt, entwickelten die Fledermäuse auch ein fein ausgeprägtes Temperaturempfinden, welches in die Abstandswahrnehmung mit einfließt. Fledermäuse können Laufzeiten bis zu ca. 0,1 Millisekunden erkennen. Da beide Ohren die Ultraschallechos empfangen, kann das Gehirn beide Bilder zu einem 3D-Bild zusammenfügen, das einem Vergleich mit unserem Augenbild mehr als standhält.
Neben der Größe und Form eines Objekts kann auch die Oberflächenstruktur und damit das Material erkannt werden. Die Objektgröße wird über die Lautstärke des Echos bestimmt. Da die gleiche Lautstärke allerdings entweder von einem kleinen, nahen oder einem großen, weit entfernten Objekt stammen kann, wird erst die Entfernung bestimmt, dann kann die tatsächliche Größe ermittelt werden.
Die Erkennung der Objektform beruht auf der Auswertung der Lautstärke und des zeitlichen Verlaufs des Echos. Ein Echo entsteht an mehreren Echofronten, die auf die Form eines Gegenstandes hinweisen. Materialien und Oberflächenstrukturen werden über die Klangfarbe des Schalls unterschieden. Die Klangfarbe eines Objekts entsteht aus objekttypischen Interferenzen (Überlagerungen) der Schallwellen, wodurch bestimmte Frequenzen verstärkt und andere abgeschwächt werden.
Damit die Fledermaus weiß, ob sich ein Objekt links oder rechts von ihrer aktuellen Position befindet, wertet sie, wie zahlreiche andere Tierarten, die Zeitunterschiede beim Eintreffen des Schalls in beiden Ohren aus. Erreicht das Echo des gleichen Objekts das linke Ohr später als das rechte, so befindet sich der Gegenstand rechts von ihr. Wie die Tiere erkennen, ob das Objekt über oder unter ihnen ist, konnte bis heute noch nicht zweifelsfrei geklärt werden. Man geht davon aus, dass sie das Interferenzmuster der Schallwellen auswerten, wie Menschen es ebenfalls machen.
Der Doppler-Effekt, also eine Verschiebung der Frequenz, tritt auf, sobald Schallwellen auf sich bewegende Objekte treffen. Wenn sich ein Objekt auf die Fledermaus zubewegt, oder die Fledermaus auf ein Objekt, nimmt die Frequenz zu und der Ton wird höher, während ein Entfernen das Gegenteil bewirkt. Fledermäuse (Hufeisennasen?) können Unterschiede von nur 6 Hz erkennen und dadurch die Bewegungsgeschwindigkeit ermitteln. Hufeisennasenfledermäuse sind in der Lage, die durch die Flügelschläge von Insekten (insbesondere Nachtfalter) erzeugten Doppler-Verschiebungen zu analysieren und über die Lautstärke des Echos die Größe des Insektes und über die Häufigkeit der Dopplerverschiebungen pro Sekunde die Flügelschlagfrequenz zu bestimmen. Dadurch können sie verschiedene Insektenarten unterscheiden.
Die Zwergfledermaus erkennt Drähte von 0,28 Millimeter aus mehr als einem Meter Entfernung und jagt am Tag etwa 500 bis 1200 Taufliegen (Drosophila), die ungefähr drei Millimeter lang sind. Andere Fledermausarten wie die Mittelmeer-Hufeisennase können sogar einen Weg zwischen 0,05 Millimeter dicken Drähten finden. Experimente haben gezeigt, dass die vom Fledermausohr aufgenommenen und im Gehirn verrechneten Signale es ermöglichen, Ziele zu unterscheiden, welche nur 10 Millimeter auseinander liegen, auch wenn die Objekte völlig verschiedene Größendimensionen haben.

Braunes Langohr (Brehms Tierleben)

Braunes Langohr (Brehms Tierleben)

Fledermäuse sind im Durchschnitt etwas kleiner als Flughunde. Als größte Fledermausart gilt die Australische Gespenstfledermaus, die eine Kopfrumpflänge von 14 Zentimetern, eine Spannweite von 60 Zentimetern und ein Gewicht von 200 Gramm erreichen kann. Die kleinste Fledermaus ist die Schweinsnasenfledermaus oder Hummelfledermaus, mit einer Kopfrumpflänge von drei Zentimetern und einem Gewicht von zwei Gramm. Sie gilt neben der Etruskerspitzmaus als kleinstes Säugetier überhaupt.
Die Skelettelemente sind meistens sehr dünn und zart ausgebildet, um das Gewicht möglichst gering zu halten.

Fledermäuse besitzen ein dichtes, oft seidiges Fell, das meistens grau bis braun oder schwärzlich gefärbt ist und keinen Haarstrich aufweist. Es gibt aber auch weiße und gemusterte Arten, bei fast allen Arten ist zudem die Bauchseite heller als der Rücken. Anders als andere Säugetiere besitzen sie kein Wollhaar, die Fellhaare sind arttypisch aufgebaut und besitzen kleine Schuppen, sie können zur Bestimmung der Arten dienen.

Auffälligstes Merkmal der Fledermäuse ist, wie bei den Flughunden, die Flugmembran, die sie zum aktiven Fliegen befähigt. Die Flugmembran besteht aus zwei Hautschichten und erstreckt sich von den Handgelenken bis zu den Fußgelenken (Plagiopatagium). Weitere Membranen erstrecken sich von den Handgelenken zu den Schultern (Propatagium), zwischen den Fingern (Dactylopatagium) sowie den Beinen. Letztere wird Uropatagium (Schwanzflughaut) genannt, sie bindet den Schwanz – sofern vorhanden – mit ein und dient oft zum Einkeschern der Beute. In der Flughaut befinden sich Muskelstränge zur Stabilisation und zum Einschlagen der Flügel sowie Nervenfasern und Blutgefäße zur Versorgung der Flughaut.

Der Daumen ist kurz – bei den Stummeldaumen (Furipteridae) fehlt er – und trägt eine Kralle; die vier übrigen Finger sind stark verlängert und spannen die Flughaut. Ebenfalls verlängert sind der Ober- und der Unterarm, der nur noch aus einem Knochen, der Speiche (Radius), besteht, während die Elle (Ulna) im mittleren Teil reduziert ist. Im Gegensatz zu den meisten Flughundarten fehlt bei den Fledermäusen die Kralle am zweiten Finger; dieser besteht bei ihnen nur aus einem langen Fingerglied. Ein Dorn am Fußgelenk, Calcar genannt, dient zum Aufspannen der Schwanzflughaut, dieser ist bei einigen Arten noch durch einen steifen Hautlappen, das Epiblema, ergänzt.

Die Hinterbeine der Fledermäuse sind im Gegensatz zu den meisten anderen Säugetieren durch eine Drehung des Beines im Hüftgelenk nach hinten gerichtet, sie enden in fünf bekrallten Zehen. Diese dienen in der Ruhephase zum Aufhängen im Quartier, wobei eine besondere Konstruktion der Krallensehnen ein passives Festhalten ohne Muskelanspannung ermöglicht – dadurch bleiben auch tote Tiere hängen.

Köpfe verschiedener Fledermäuse (Ernst Haeckel)

Köpfe verschiedener Fledermäuse (Ernst Haeckel)

Die Köpfe der verschiedenen Fledermausarten unterscheiden sich beträchtlich. Während manche an Gesichter anderer Tiere erinnern – zum Beispiel an Mäuse, darum auch der Name dieser Gruppe –, haben andere besondere Strukturen entwickelt. Viele Arten haben Nasenblätter oder andere Gesichtsstrukturen, die zum Aussenden oder Verstärken der Ultraschalllaute dienen. Die Ohren, die bei manchen Arten drastisch vergrößert sind, sind oft mit Rillen oder Furchen versehen, darüber hinaus haben sie einen Tragus, einen Ohrdeckel, der der Verbesserung der Echoortung dient. Fledermäuse können schwarz-weiß sehen, und wie aufgrund jüngster Untersuchungen festgestellt wurde, können einige Arten auch UV-Licht sehen, das von einigen Blüten verstärkt reflektiert wird, die sie dann zur Nektaraufnahme anfliegen. Zusätzlich verfügen Fledermäuse über einen Magnetsinn. Bei Langstreckenflügen orientieren sie sich an den Linien des Erdmagnetfeldes, ähnlich wie Zugvögel und viele andere Tierarten. Es gibt Hinweise darauf, dass der Magnetsinn durch Magnetit entsteht.

Fledermäuse besitzen im Normalfall ein Gebiss aus 32 bis 38 Zähnen, wobei besonders die Eckzähne stark ausgeprägt sind. Diese dienen den meisten Arten zum Aufbrechen des Chitinpanzers ihrer Beuteinsekten und den frugivoren zum Festhalten der Früchte. Die sanguinivoren (blutleckenden) Arten verwenden zum Anritzen des Wirts entgegen dem weit verbreiteten Glauben die unteren Schneidezähne. In Anpassung an die unterschiedlichen Ernährungsweisen variiert der Aufbau des Gebisses allerdings erheblich, sodass sich aus der ursprünglichen Zahnformel 2133/3133 = 38 insgesamt über 50 verschiedene Varianten entwickelt haben. Besonders wenige Zähne weist der Gemeine Vampir (Desmodus rotundus) mit einer Zahnformel von 1111/2121 = 20 auf.

Die Augen sind meistens sehr klein, schwarz und besitzen wimpernlose Augenlider. Im Mundbereich und bei einigen Arten auch im Bereich der Nase besitzen die Tiere Vibrissen, also empfindliche Sinneshaare. Durch Drüsen im Mundbereich sezernieren die Tiere ein öliges Sekret, welches zur Pflege der Flughäute eingesetzt wird und wahrscheinlich auch arttypische Geruchsstoffe enthält. Weitere Duftdrüsen sitzen je nach Art an weiteren Stellen des Gesichts, an den Schultern oder an anderen Körperstellen.

Fledermäuse besitzen keine auffälligen Geschlechtsunterschiede. Die ausgewachsenen Weibchen sind in der Regel zwar etwas größer als die Männchen, dies kann jedoch nur durch genaue Messungen festgestellt werden. Erst bei der genauen Betrachtung der Genitalregion ist der Penis der Männchen erkennbar. Dieser wird durch einen kleinen Penisknochen (Baculum) stabilisiert. Der Penis ist, wie auch beim Menschen, freihängend (Penis pendulum). Dies ist im Tierreich recht ungewöhnlich. Bei einigen Arten treten besonders zur Paarungszeit auch die Hoden und Nebenhoden deutlich hervor.
Bei säugenden Weibchen erkennt man außerdem die gut ausgebildeten Brustdrüsen, die nahe den Achselhöhlen liegen. Bei den meisten Arten sind nur zwei Zitzen ausgebildet, manche Arten besitzen jedoch auch vier. Bei einigen Familien sind außerdem paarige Haftzitzen ohne Milchabgabe im Bereich der Leiste ausgebildet, an denen sich die Jungtiere festklammern können.

Dieser Beitrag wurde unter Allgemein abgelegt und mit verschlagwortet. Setze ein Lesezeichen auf den Permalink.

Durch das Kommentieren eines Beitrags auf dieser Seite werden automatisch über Google personenbezogene Daten erhoben. Diese Daten werden ohne Ihre ausdrückliche Zustimmung nicht an Dritte weitergegeben. Weitere Informationen finden Sie in der Datenschutzerklärung (http://www.beutelwolf.martin-skerhut.de/impressum/). Mit dem Abschicken eines Kommentars wird die Datenschutzerklärung akzeptiert.